teacher development
Environmental Science Pathways: Empowering Students To Find Solutions To Protect The Planet

School aged children have experienced growing up in a world where we discuss and hear the current status of the global climate. What if we empowered our students to find solutions to protect the planet? The project team at South Plantation High School in Plantation, FL did just that through their Environmental Science Pathway project. With the support of the McCarthey Dressman Education Foundation, they sought to develop a curriculum that is guided by the themes of reducing the carbon footprint, water issues, and human population issues.
What were the goals of the project?

The project team wanted to instill environmental stewardship in their students through their comprehensive Environmental Science Pathway Curriculum. In doing so, students will become more engaged in their coursework and gain industry-identified content knowledge and employability skills. To accomplish their goal, the team recognized their teachers needed time to work collaboratively to identify and address student challenges, develop shared goals for the pathway, and gain the skills necessary to implement the developed goals. They planned to continue with the Environmental Science and Everglades Restoration Professional Learning Community (PLC) and to collaborate with the Environmental Advisory Committee to train and support teachers.
What progress did they make to their goals?
Even with schools going virtual, the project continued on.
The PLC met virtually and in person on a regular basis. Members of the community were trained in new software and e-learning platforms and supported each other by sharing their new skill sets. Chemistry and Environmental Research teachers joined the magnet team.
The PLC team hosted monthly campus beautification days where the school’s outdoor classroom gardens and green spaces were maintained while providing training for faculty and teachers.
Teachers participated in professional learning by attending virtual workshops and on campus events. Students were provided with opportunities for community and civic engagement outside of the classroom through virtual symposiums and conferences.
Cambridge courses that are in alignment with the Environmental Science Pathway were infused into the magnet course selection. Environmental programs/ lessons and field trips were executed virtually, on campus, and at home with the help from their Environmental Advisory Committee across all grade levels. Most programs included an outdoor learning component. Teachers provided hands on learning opportunities that exceeded curriculum standards for in-person and virtual students.
What challenges did they face and how did they address them?
The greatest challenge for the project team was learning how to use the online learning software in which all school operations had to take place. The grant team learned a new set of tools and a very high level of patience as technology is a great educational vehicle until it doesn’t work or students cannot access.
The team also recruited an alumnus to provide additional technology support. The Environmental Advisory Committee shifted their work from the field to a virtual Environmental programming for students and teachers. The traditional Magnet Open House was in the style of a drive-thru using QR codes.
Another challenge the team faced is not being able to implement the PLC’s common research paper and lab report format due to teachers working in isolation and science labs being limited.
What will they do next?
The PLC teachers have collaborated with the Environmental Advisory Committee to come up with ideas for infusing the newly created virtual programming into their traditional project based learning and field trips. Cross-curricular connections, science research, and hands-on lab investigations will be part of the Environmental Science Pathway Curriculum.
The Everglades Foundation’s literacy training is being planned as professional development for all magnet teachers. In doing so, the project team hopes to become an Everglades Champion School that showcases the project’s success!
Additional Resources
Math and Maritime Place-Based Learning – M2BPL Re-thinks Math Workshop
Math and Maritime Place-Based Learning
Rig up the mast, batten down the hatch and come sail away with the educators at the Blue Heron School in Port Townsend, Washington as they embark on their exciting project: Math and Maritime Place-Based Learning – M²PBL. The district’s Maritime Discovery Schools Initiative (MDSI), implemented in 2014, is guiding their transformation by encouraging teachers to change instructional pedagogy, increase student engagement, and experience connections between classrooms and business partners. This proposal develops 30 teachers over three years.
What exactly is the Math and Maritime Place-Based Learning – M2PBL?
Research has shown these educators that students benefit highly from using a Math Workshop (MW) model.
When executed successfully, MW models support a culture of underlying beliefs:
- all students are capable of quality thinking;
- participation through hands-on activities and discourse builds student thinking;
and - through true engagement, all young minds can make real sense of mathematics.
An engaging environment is also the premise for Project Based Learning (PBL), where students use 21st century skills to learn collaboratively while working on projects to benefit themselves and others. The M²PBL proposed a structure for K-8 teachers to collaborate and design sense-making math environments tailor made for their students.
Through deepening knowledge of the Common Core State Standards in Mathematics (CCSSM) – particularly in Number and Operations, Measurement, and Geometry – teacher teams (K-2, 3-5, 6-8) focused on:
1) Number Talks (NT), a workshop element where students apply and verbally share strategies to solve and improve mental computations (number fluency),
and
2) PBL projects to apply students’ growing math strategies and conceptual knowledge. The MDSI promotes community partnerships between the school district and maritime-related industries.
As exciting as this is for the teachers, when the students get involved it brings it to another level. The educators are partnering with Port Townsend Sails, a local business specializing in “quality sails for traditional and modern rigs.” Teachers, students, and employees will collaborate to explore authentic mathematics on-site in the sail loft. There, and in classrooms, student mathematicians will count and measure to possibly build boats, design sails, and and/or navigate!
What were the goals for M²PBL?
They had two primary goals to accomplish in year one. They wanted answers to the following questions:
- How do Number Talks increase the quality of students’ number fluency?
- Does authentic application of number fluency deepen student learning in project-based mathematics?
Eleven teachers initially met for professional learning in an elementary group and an intermediate group; each grade level met for two full days (early fall and mid-winter).
Those teachers recorded 10 half-day visits into classrooms (using a substitute) which totaled to around 15-20 visits arranged during planning times and/or with colleagues to “step out” for a short period to observe. One teacher also requested a grade level team observation one morning, so three teachers not technically a part of the grant this year joined in on observations of Number Talks. This was a productive way to share knowledge around fluency outside of the core group. Teacher texts, classroom fluency instructional materials, and PBL supplies were purchased. Items included: student journals, chart paper/markers, wood (for boats), bird feeders, bird ID texts, meter tapes, weights, calculators (specifically for order of operations), and math manipulatives for Family Math Night (dice, spinners, etc.). There, two classes taught fluency activities to parent/students, and the activities went home for continued learning. In-kind donations included dowels (masts), sail cloth (from PT Sails), sand paper/wood pieces for sanding blocks from the high school shop. Volunteer support was received from parents (chaperones), the Schooner Martha captain and family, the Northwest Maritime Center/Wooden Boat Foundation shop personnel, Carol Hasse and crew of Port Townsend Sails, the PT High School STEM/maritime students, and parents to help first graders drill boats for the mast and to tack sails to masts.
What were some of the challenges?
As we can see, they’ve been busy this year. But like all new project ideas, they are not without challenges. The biggest challenge was the collaborative work that required teachers to be out of their classrooms. One participant asked that her grade level team be able to collaborate around classroom observations, and that was accomplished. It’s also been more difficult than anticipated to get teachers to keep up with data collection. But they are already coming up with ideas on how to improve next year. Things like: 1) Supporting a full day of professional learning around math fluency/PBL for any teacher not involved in year one who volunteers (sub time/materials stipend); 2) Supporting grade level teams to collaborate around math fluency through collegial visits/observations (sub time); 3) And finally, approaching Port Townsend Rigging Company as an additional maritime partner to help expand and grow the program for years to come.
All in all, it’s an exciting project to see come together. We’re all waiting with bated breath for this ship to come back to harbor with tales of their next success.
Learn more
- Project-Based Learning: Students actively investigate solutions to complex, long-term challenges, often in groups
- Problem-Based Learning in Mathematics: ERIC Digest
- Maritime Discovery Schools Initiative
- Maritime Discovery update: Students helping salmon
Waltham Integration Network: Connecting Teachers to Investigate and Improve Digital Learning Across Contexts
It’s easy, as an educator, to feel like an unmoored ship in a vast sea. Pricks of light in the distance indicate other ships, largely unreachable. Even though teachers in the same districts and schools work closely in a physical sense the gulf of communication can be vast and many good ideas and techniques are not shared and refined amongst a larger pool of minds.
This is what Elizabeth Homan, of Waltham Public Schools in Waltham, MA, is changing with her program Waltham Integration Network: Connecting Teachers to Improve and Investigate Digital Learning in Urban Settings. While the name is complicated, the aims are simple. This project proposed to bring together a small group of teacher leaders from across an urban school district to engage in collaborative inquiry and teacher-research related to the integration of digital technologies in classroom practice. The goal of this project is twofold: (1) research the challenges and possibilities of digital integration in a high-needs urban school district, and (2) increase the capacity of the district’s digital professional learning opportunities for teachers.
How can collaborative inquiry for teacher development work?
By keeping research at its center, engaging teachers in conversations about “what works” for their digital learning, and helping teachers support their colleagues in reinventing their teaching to meet the needs of today’s very “plugged in” learners. The first year was largely preparatory with an articulation of goals and a formulation of an action plan that would turn into quarterly meetings.
At the start of the project, cohort members worked to identify the student learning goals for the year and articulate how their goals could be measured using qualitative or quantitative classroom data. These goals could be as simple as learning how to create and fully integrate a new tool, such as a classroom website, or it may involve an entirely new approach to instruction, such as “flipping” the classroom. Later in the year, team members shared classroom artifacts, lesson plans, and examples of videotaped practice from their classrooms with other team members in quarterly face-to-face workshops, connecting their practice with research-based approaches and examples.
The project will continue to meet these goals through recruitment of additional teachers, teacher mentorship of new recruits, sharing teacher work through the blog and, in the summer, development of video evidence of teacher practice with technologies.
How can collaborative inquiry impact educators?
The educators at Waltham Public Schools have been busy. In their first year they have recruited research assistants to help mentor teachers at the middle and elementary school levels. They have also developed a number of #WINproj spaces for sharing practice. From their blog (walthamintegrationnetwork.org) to their twitter hashtag (#WINproj) and Facebook page, these educators have worked this year to foster a digital voice for the network and to develop consistent expectations around the content and design of their website/blog and social media interactions. The teachers have worked throughout the year to archive photos, examples of student work, or videos of their practice, which they will use this coming summer to develop video reflections on their experience and what they have learned. And because the project and leader are new to the district, much of this year has been about building relationships, learning what’s happening in the buildings, and building excitement for the project.
How can collaborative inquiry improve instruction and pedagogy?
The first and most obvious benefit is a larger network of teachers and educators who have bridged the communication gap. Partnerships between teachers have formed both online and in person. The teachers are also becoming increasingly proficient with web writing and familiarity with the online tools such as the blogs and message boards. It’s clear they’ve been doing something right as they’ve been asked to present at the National Council of Teachers of English in November which will serve to get the word out about the program and widen the network of the educators involved.
How could this program be improved?
According to the team, the biggest challenge the program participants faced was that of time. Not expectantly they had trouble with the temporal logistics of getting so many teachers in the same space physically. More support and training for online meeting spaces is paramount for the growth of this project.
On a lesser, but no less important note, they found that some teachers needed to get acclimated to blogging. While they’re perfectly proficient in the classroom, the public articulation of methods of pedagogy doesn’t come easy for everyone. More support for first time bloggers would have a large impact on the productivity and communication between all parties.
Learn More
Teachers Solve Problems in Collaboration to Improve Mathematics Instruction in Project RENEW
We talk a lot about how isolating it can be to be a teacher, but nowhere is that more apparent than in small, rural districts. The teachers there are often the only instructor for a single subject. This is especially difficult for such an important and variable subject as mathematics. As Phillips and Hughes explain:
“Too often, teachers do not have sufficient opportunities to work together to examine work and structure interventions within their classrooms.
As the new standards are implemented, we must ensure that teachers are not left alone to figure out how best to teach to them.
The standards are an opportunity for greater collaboration, fresher thinking, and a rearticulation of shared goals for teachers and students.
By collaborating with each other and with instructional specialists through cycles of examining student work, creating hypotheses about how to implement common-core-aligned lessons, implementing them, and making adjustments in their practice in real time, teachers can find the best ways to help their students reach these higher expectations while still maintaining individual styles and flexibility.” (2012, Education Week)
With multiple levels and subjects within it, math is a daunting subject to teach. But that’s what the educators at West Elementary School in Manhattan, Kansas plan to do.
What is Project RENEW?
Project RENEW emphasizes the development of deeper content knowledge among teachers, as well as pedagogical knowledge aligned with a standards-based approach to content teaching. By building a cadre of elite math educators, the teachers at West Elementary School aim to create an easily adoptable model to improve math scores within their district and beyond.
What are the project goals?
With the adoption of a much more rigorous set of standards, Common Core Standards for Mathematics (CCSSM), the teachers at West Elementary realized that they must rethink how they teach mathematics. So, they came up with the following goals:
- Increase student achievement in mathematics for ALL students in grades K-12.
- Strengthen the content and pedagogical knowledge of K-12 teachers.
- Increase the implementation of CCSS-based mathematics instruction and curriculum in K-12 classrooms.
- Strengthen and expand existing leadership opportunities for teachers in mathematics to enhance collaboration to address the needs of K-12 schools, especially in small rural school districts.
The project proposed that by completing goals two through four (strengthening teachers, instruction and math leadership) that goal one (improved student achievement in math) would follow shortly after.
How did this project strengthen teaching in mathematics?
Project participants attended a summer math academy to develop CCSSM aligned curriculum and tasks. This academy helped the group understand their current practice and focus on ways to improve it.
First, teachers were pre-tested on their mathematical knowledge in relation to how they would implement mathematical practices in the classroom and had to submit an “action plan related to these practices and instructional strategies used for implementation.”
Next, they were observed during instruction and given feedback during professional development sessions.
In addition to this, teachers in smaller districts nearby that do not have funding for professional development and/or resources were contacted by the teachers from Project RENEW. Together, they were able to share resources and provide professional development for these small districts. Funds provided by McCarthey Dressman Education Foundation were also used to purchase new materials for the academy, so they were able to box up their “used” standards-based textbooks, load them up in a truck and delivered them to four different districts in the area.
How did this project impact the math instruction?
After a year of funding they’ve improved “by leaps and bounds and are ready to tackle the next steps” according to the project report.
The difference between the teacher Pre-Test and Post-Test was phenomenal. The average score starting out was a 2/7 correct responses and by the end that average had improved to 5/7. That’s 42.8% improvement in teacher knowledge of how to implement math instruction for CCSSM.
Teachers were also observed showing marked improvements on their in class instructional skills, particularly in the realm of “providing problem solving opportunities for their students, requiring productive struggle and discourse.”
To further extend the benefits of the program in their community, the teachers involved in the project were also responsible for disseminating what they learned in professional development sessions with the smaller districts.
What knowledge would they share with teachers exploring similar projects?
Like many of these ambitious projects one of the hurdles that must be overcome is the lack of resources. Even with the grant funding, they were unable to accommodate all the educators they would have liked to. The waitlist for additional involvement is long and shows no sign of letting up, much to the disappointment of those who know the project’s promise. In the future, they plan to video tape the lessons to help smaller districts to gain access to this valuable resource. This will be a focus in the year to come.
Also of note, the implementation of this program might encounter challenges operating on a larger scale due to the vast time requirements put on the educators and the stipends needed to cover their time. They hope that in the coming years that the texts, videos, and seminars resulting from this program will be able to be adapted for use by other districts and schools around the country.
Further Readings
- Report: Teacher Leadership Is Key to Common Core Success (2015, THE Journal)
- Teacher Leadership, Collaboration, and Common Core State Standards (2015, Learning First Alliance)
- Teacher Collaboration: Keys to Common Core Success (2014, AMLE)
- Teacher Collaboration: The Essential Common-Core Ingredient (2012, Education Week)
Additional Resources
Lesson Study Improves Science Instruction
It’s no secret that Lesson Study works.
There are many, well documented success stories and it has been used to great effect in Japan.
There’s a reason Japanese students consistently score in the top ten in the Organization for Economic Operation and Development’s Programme for Student Assessment. But today’s blog isn’t about Japan, it’s about improving the quality of elementary level science instruction and how the educators at Long Branch Elementary in Liverpool, New York are doing it.
What is lesson study?
For those that may not know, Lesson Study is a widely utilized collaborative professional development practice (2015, Wikipedia). Lesson Study starts with a group of educators that pick a content focus with the express purpose of preparing a research lesson. That group will convene regularly to share research, discuss national, state and local education policies and standards correlating to the subject at hand. This enables teachers from a wide variety of subjects and disciplines to cross-pollinate their ideas and research with one another in a directed and focused environment. By observing and critiquing each other’s lessons and delivery these educators are able to elevate each other’s abilities and knowledge base. And by the transitive property, the students are exposed to a well-constructed lesson plan.
How are the teachers at Long Branch Elementary using lesson study?
These educators decided to focus their lesson study efforts on the sciences, including studying a national framework for science education and how they could adopt it to fit their specific needs.
According to their proposal, they wanted to be guided by the following three questions:
- How do we design science instruction that makes students’ thinking visible?
- How can we meet our students’ needs and simultaneously address the new science framework?
- How will evidence of students’ learning be used to help us revise our original lesson?
What did they learn?
The project at Long Branch Elementary has been so successful that their program and teaching tools have spread to two other schools in the region, with educators from those schools now participating in the lesson study program. In addition, at the time of their report, they had three out of the four research cycles completed and implemented, with the final research team in the midst of their own cycle and well on their way to completion.
The educators participating expanded their knowledge base about claims/evidence, science content knowledge, and constructivist methods for teaching elementary science. The teachers also expressed “self-efficacy and confidence in regards to teaching claims and evidence, using inquiry-based instruction and teaching with student science notebooks.”
Teachers weren’t the only ones to benefit. Students had the opportunity to collect data, engage in scientific experimentation and increased the level of science knowledge throughout the course of the cycle.
How did Lesson Study support improved science instruction?
Understandings gleaned from the Lesson Study were used to inform instruction. For example, educators learned that it can be difficult to facilitate discussions with students with varying levels of comfort with the subject matter. Teachers report that teaching students to make claims based on evidence has been a bit of a pedagogical challenge, as the students tend to confuse evidence with claims. They also found that without visual aids, such as graphs and charts, the difficulty in communicating these ideas increased exponentially. These valuable understandings of what wasn’t working in the science research lessons provided educators with specific modifications they could make in their lessons to make student learning more effective.
What did they learn about implementing Lesson Study?
The structure of their school is not very supportive of lesson study which has forced them to start their meetings during the summer. They found they cast too wide a net when it came to getting the research groups started and think that scaling down the research lessons will improve the speed in which they can be implemented.
How can you make this work at your school?
Research and texts on lesson study are not hard to come by. The biggest challenge you can face is that your school does not have the time or resources to implement the necessary bits and pieces at study inception, however, once the process gets going the road gets easier as the work invested makes future studies easier. Bottom line? Lesson study works. Make it work for you.