Month: May 2013
Inquiry, Relevance, and Citizen Science: A Roadmap to Successful Science Projects
When students tackle science hands on, they can save the world!
If inquiry is meaningful, real world practices improve student understanding.

Memorizing the periodic table, a formula to determine the circumference of an atom, or the genus of a frog can be important, but let’s face it… you’re looking at an uphill battle when you are staring down the barrel of sixty drooping eyelids trying to explain why it is important that the student retain this information.
There is ample evidence that students retain very little from lectures in science classes. There is a reason for this – when you are given lists of equations, tables, or dozens of names to memorize it can be difficult to see where this makes an impact in the real world.
So how do we change this?
Simple. We help students impact the real world using practical inquiry into local and global science. Or better yet, take the classroom to the science! Whether students are contributing data to global honey bee research or graphing the skies, citizen science allows students to participate in global scientific inquiry. As explained here, integrating inquiry based science meaningfully in the real world is a tall order for any educator. In this post, we will share with you an example project and supporting resources to inspire this integration in your classroom.
How do educators integrate scientific inquiry and real world relevance?
The Water Quality Project: A Map to Understanding was reported by Linda Weber of Natick High School in Natick, Massachusetts. The goal of this project at is to let students “do” science like real scientists by observing, questioning, and ultimately coming up with a solution to a problem that can be shared with the larger community. In the short term, participation allows students to see and experience the process of scientific inquiry first hand, rather than having someone dictate it to them. In the long term, students who participated would see how the decisions they were making now would impact their lives in the future. According to the National Science Teachers Association’s position statement:
“Scientific inquiry reflects how scientists come to understand the natural world, and it is at the heart of how students learn. From a very early age, children interact with their environment, ask questions, and seek ways to answer those questions. Understanding science content is significantly enhanced when ideas are anchored to inquiry experiences. “
What strategies can be used to increase the real world relevance of the inquiry process?

One of the long term goals of this project included helping students see how the decisions they make today influences their future. This ambitious goal required teachers to frontload curriculum earlier in the year and to engage students with relevant narratives (like PBS’ Poisoned Waters) and a guest speaker assembly including local and regional water quality scientists.
All of this preparation helped students prepare for real world and hands on activities for the project. These included:
- Helping out their community
For the annual Charles River Watershed Association’s clean-up day, students and teachers removed a variety of trash, from traditional cigarette butts and paper to more unusual things like television sets. For the nearly 50 students that participated (on a school vacation weekend, mind you) the experience was insightful. Class discussions about and concern for their environment lingered into the following weeks in class. These shared experiences became the “reason” to investigate water quality in the community rather than the “just the wrap up activity” of the project.
-
Environmental Science and Robotics classes at collection sites test and launch robots, then collect water samples to be analyzed at the site and in class. Photo from Linda Weber, Project Awardee. Collecting local data
After the students had returned to the area to collect water samples. They used collection robots they built during their classroom time to reach water samples they couldn’t normally get to. Using technologies like wikis, blogs, and Google Maps they were able to share their results instantly with their classmates. - Contributing to global datasets
The project also included research for the testing parameters of The World Monitoring Day Organization or World Water Monitoring Day. The Water Quality Project isn’t the only program in the United States doing this. Many other schools (in over 24 countries) are participating in The World Water Monitoring Challenge. It charges its members to educate and engage students and citizens in the protection of international water resources.
- Presenting the results
When all the research was said and done there was a “massive poster presentation” where every student was required to present his or her findings and share ideas for how to improve the water conditions in their community.
Why does it work?
When learning is meaningful, the impact is tangible.
When students have the opportunity to showcase their skills to a larger audience than their teachers or peers it helps to internalize the lessons they learn in the classroom. This benefit accumulates when the students can see themselves using inquiry-based science to make a real difference in their communities.
Learn more about integrating Citizen Science in education
- British Science Association: The 3Rs of Citizen Science in Education
- Zooniverse
- Audrey Watters: Five Apps that Encourage Citizen Science